Abstract
The increasing confirmed cases and death counts of Coronavirus disease 2019 (COVID-19) in Pakistan has disturbed not only the health sector, but also all other sectors of the country. For precise policy making, accurate and efficient forecasts of confirmed cases and death counts are important. In this work, we used five different univariate time series models including; Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Nonparametric Autoregressive (NPAR) and Simple Exponential Smoothing (SES) models for forecasting confirmed, death and recovered cases. These models were applied to Pakistan COVID-19 data, covering the period from 10, March to 3, July 2020. To evaluate models accuracy, computed two standard mean errors such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The findings show that the time series models are useful in predicting COVID-19 confirmed, deaths and recovered cases. Furthermore, MA model outperformed the rest of all models for confirmed and deaths counts prediction, while ARMA is second best model. The SES model seems superior to other models for prediction of recovered counts, however MA is competitive. On the basis of best selected models, we forecast form 4th July to 14th August, 2020, which will be helpful for decision making of public health and other sectors of Pakistan.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research received no external funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This work does not need any approval of the IRB.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.