We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings. Learn more about our Privacy Notice... [opens in a new tab]

Polypharmacology of Some Medicinal Plant Metabolites Against SARS-CoV-2 and Host Targets: Molecular Dynamics Evaluation of NSP9 RNA Binding Protein

14 September 2020, Version 1

Abstract

Background: Medicinal plants, as rich sources of bioactive compounds with antiviral properties, are now being explored for the development of drugs against SARS-CoV-2.

Aims: Identification of promising compounds for the treatment of COVID-19 from natural products via molecular modelling against NSP9, including some other viral and host targets and evaluation of polypharmacological indications.

Main methods: A manually curated library of 521 phytochemicals (from 19 medicinal plants) was virtually screened using Mcule server and binding interactions were studied using DS Visualiser. Docking thresholds were set based on the scores of standard controls and rigorous ADMET properties were used to finally get the potential inhibitors. Free binding energies of the docked complexes were calculated employing MM-GBSA method. MM-GBSA informed our choice for MD simulation studies performed against NSP9 to study the stability of the drug-receptor interaction. NSP9 structure comparison was also performed.

Key findings: Extensive screening of the molecules identified 5 leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for interleukin-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential multi-target inhibition properties for NSP9, furin, ORF3a, and IL-6. Additionally, molecular dynamics simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water.

Significance: These compounds with the highest drug-like ranking against multiple viral and host targets have the potential to be drug candidates for the treatment of SARS-CoV-2 infection that may possibly act on multiple pathways simultaneously to inhibit viral entry and replication as well as disease progression.

Keywords

Virtual Screening Tool
Phytochemicals
Polypharmacology
COVID-19
ORF3a
Furin
NSP9
Interleukin 6
Molecular Dynamics Simulation Study

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials ChemRXiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.