Abstract
One of the main challenges in dealing with the current COVID 19 pandemic is how to detect and distinguish between the COVID 19 and non COVID 19 cases. This problem arises since COVID 19 symptoms resemble with other cases. One of the golden standards is by examining the lung using the chest X ray radiograph (CXR). Currently there is growing COVID 19 cases followed by the CXR images waiting to be analyzed and this may outnumber the health capacity. Learning from that current situation and to fulfill the demand for CXRs analysis, a novel solution is required. The tool is expected can detect and distinguish the COVID 19 case lung rely on CXR. Respectively, this study aims to propose the use of AI and machine learning aided tool to distinguish the COVID 19 and non COVID 19 cases based on the CXR lung image. The compared non COVID 19 CXR cases in this study include normal (healthy), influenza A, tuberculosis, and active smoker. The results confirm that the machine learning tool is able to distinguish the COVID 19 CXR lungs based on lung consolidation. Moreover, the tool is also able to recognize an abnormality of COVID 19 lung in the form of patchy ground glass opacity.
To conclude, AI and machine learning may be considered as a detection tool to identify and distinguish between COVID 19 and non COVID 19 cases in particular epidemic areas.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
NA
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
U. of Indonesia
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.