Exploring the Conformational Dynamics of RNA Dependent RNA Polymerase of SARS-CoV-2 in the Presence of Various Nucleotide Analogues

28 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

RNA dependent RNA polymerase (RdRP) from positive stranded RNA viruses has always been a hot target for designing of new drugs as it is responsible for viral replication. The major class of drugs that are targeted against RdRP are nucleotide analogues. An extensive docking and molecular dynamics study describing the role of natural nucleotides (NTPs) and its analogues in imparting an inhibitory effect on the RdRP has been presented here. RdRP simulations in its apo, NTP-bound and analogue-bound form have been performed for a cumulative time of 1.9 μs. The conformational flexibility of the RdRP molecule was explored using Principal Component Analysis (PCA) and Markov State Modeling (MSM) Analysis. PCA inferred the presence of correlated motions along the conserved motifs of the RdRP. The ligand binding motif F and template binding motif G showed motions that are negatively correlated with one another. LYS 551, ARG 553 and ARG 555 which are a part of the motif F appear to form strong interactions with the ligand molecules. ARG 836, a primer binding residue was observed to strongly bind to the nucleotide analogues. The MSM analysis helped to observe different conformational states explored by the RdRP. The ensemble docking of the ligands on the Markov states suggested the involvement of the above residues in ligand interactions. The Markov states obtained clearly demarcated the open and closed conformations. The closed states were observed to have more favorable docking of the ligands. MSM analysis predicted a probable inhibitory mechanism involving the closing of the template entry site by reduction in the distance between the flanking finger and thumb subdomain.

Keywords

SARS-CoV-2
remdesivir
favipiravir
galidesivir
sofosbuvir

Supplementary materials

Title
Description
Actions
Title
Supplementary data 27August
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.