Abstract
We present a new mathematical model of disease spread reflecting specialties of covid-19 epidemic by elevating the role social clustering of population. The model can be used to explain slower approaching herd immunity in Sweden, than it was predicted by a variety of other mathematical models; see graphs Fig. 2. The hierarchic structure of social clusters is mathematically modeled with ultrametric spaces having treelike geometry. To simplify mathematics, we consider homogeneous trees with p-branches leaving each vertex. Such trees are endowed with algebraic structure, the p-adic number fields. We apply theory of the p-adic diffusion equation to describe coronavirus’ spread in hierarchically clustered population. This equation has applications to statistical physics and microbiology for modeling dynamics on energy landscapes. To move from one social cluster (valley) to another, the virus (its carrier) should cross a social barrier between them. The magnitude of a barrier depends on the number of social hierarchy’s levels composing this barrier. As the most appropriate for the recent situation in Sweden, we consider linearly increasing barriers. This structure matches with mild regulations in Sweden. The virus spreads rather easily inside a social cluster (say working collective), but jumps to other clusters are constrained by social barriers. This behavior matches with the covid-19 epidemic, with its cluster spreading structure. Our model differs crucially from the standard mathematical models of spread of disease, such as the SIR-model. We present socio-medical specialties of the covid-19 epidemic supporting our purely diffusional model.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
no funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Linnaeus University
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.