Abstract
A key parameter in epidemiological modeling which characterizes the spread of an infectious disease is the mean serial interval. There is increasing evidence supporting a prolonged viral shedding window for COVID-19, but the transmissibility in this phase is unclear. Based on this, we build a model including an additional compartment of infectious individuals who stay infectious for a longer duration than the reported serial interval, but with infectivity reduced to varying degrees. We find that such an assumption also yields a plausible model in explaining the data observed so far, but has different implications for the future predictions in case of a gradual easing on the lockdown measures. Considering the role of modeling in important decisions such as easing lockdown measures and adjusting hospital capacity, we believe that it is critically important to consider a chronically infectious population as an alternative modeling approach to better interpret the transmission dynamics of COVID-19.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study is supported by Swiss National Science Foundation #BSSGI0_155851.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study does not include any clinical trial.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
anthony.hauser{at}ispm.unibe.ch, viacheslav.kachalov{at}usz.ch, sara.andresen{at}uzh.ch, thomas.scheier{at}usz.ch, peterwerner.schreiber{at}usz.ch, huldrych.guenthard{at}usz.ch, roger.kouyos{at}usz.ch
1 𝒩, β, exp denotes the Normal, Beta, and Exponential distributions respectively.
2 All other compartments (Ip, Ic, H, ICU, R, and X) are assumed to be zero at t = 0, and the first case is assumed to be observed at t = 1.
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.