Abstract
Objective To assess potential methods of reducing visible aerosol generation during clear corneal phacoemulsification surgery in the era of Covid-19.
Methods Aerosol generation during phacoemulsification was assessed using a model comprising a human cadaveric corneoscleral rim mounted on an artificial anterior chamber. Typical phacoemulsification settings were used and visible aerosol production was recorded using high speed 4K camera. Aerosolisation was evaluated under various experimental settings: Two different phacoemulsification tip sizes (2.2mm, 2.75mm), varying levels of corneal moisture, the use of suction and blowing air in the surgical field, the use of hydroxypropyl methylcellulose (HPMC) coating of the cornea with a static and moving tip.
Results This model demonstrates visible aerosol generation during phacoemulsification with a 2.75mm phacoemulsification tip. No visible aerosol was noted with a 2.2mm tip. The presence of visible aerosol is unrelated to corneal wetting. Suction in close proximity to the aerosol plume did not impact on its dispersion. Blowing air redirected the aerosol plume towards the ocular surface. Visible aerosol production was abolished when HPMC was used to coat the cornea. This effect lasted for an average of 67±8 seconds in the static model. Visible aerosol generation was discerned during movement of the 2.2mm tip towards the corneal wound.
Conclusions We demonstrate visible aerosol production in the setting of a model of a clear cornea phacoemulsification. Visible aerosol can be reduced using a 2.2mm phacoemulsification tip and reapplying HPMC every minute during phacoemulsification.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors received no financial support for the research, authorship, and/or publication of this article.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.