So You’ve Found a Comet With a Weird Orbit …

A recently discovered space rock hurtling through the solar system has some of the characteristics of an interstellar object. Here's how astronomers would know for sure.
MASTERS a telescope in Argentina situated under the stars
How can astronomers tell the difference between a local bit of space rock and an interstellar interloper? It mostly comes down to the comet’s eccentricity.Courtesy of Cristian Lopéz

On the evening of March 28, a small automated observatory on the Andean steppe in northwestern Argentina watched a previously undetected comet drift through the solar system nearly 500 million miles away. New comets are rare enough—astronomers only add a few dozen to the official tally each year—but this particular bit of space rock came with an added bonus. Its trajectory through the solar system indicated that it might have originated elsewhere in the galaxy, which would make it only the third interstellar object ever discovered.

The following week, Vladimir Lipunov, the Russian astronomer who manages the observatory, made several more observations of the unusual comet. The first two interstellar objects discovered, ‘Oumuamua and 2I/Borizov, both had trajectories that clearly indicated they were not from our local galactic neighborhood. But the path of this new object, known as C/2020 F5, was more ambiguous. Maybe it was a local, maybe it wasn’t. The only way to tell was to gather more data.

Outer Space, Alien, Travel, Galaxy
Everything you need to know about SETI, the Drake equation, ’Oumuamua, and hot tubs.

By the time Lipunov shared his observations with the Minor Planet Center, an arm of the International Astronomical Union that is the official clearinghouse for observations of asteroids and comets, there was still enough uncertainty in the measurements to raise a few eyebrows in the professional and amateur astronomy community. Since news of the comet’s existence was made public on April 5, there have been more than 80 observations of the object. The data from additional observations has slightly reduced the chances that the comet is interstellar, but the rock’s provenance is still an open question.

“It would be cool if it turned out to be interstellar, but I’m kind of skeptical at this stage,” says Davide Farnocchia, a navigation engineer at NASA’s Jet Propulsion Laboratory who studies the orbits of comets and asteroids. “Interstellar objects are unlikely, and extraordinary claims need to be backed up by clear evidence.”

NASA estimates that there are billions of comets lurking at the edge of our solar system, but we only see the small fraction of them that are kicked into a journey toward the sun by the pull of gravity. A comet’s orbit can take anywhere from a few dozen years to millennia to complete, meaning astronomers on Earth only ever see a small slice of the orbit. So how are they able to tell the difference between a local bit of space rock and an interstellar interloper? It mostly comes down to the comet’s eccentricity.

Eccentricity is astronomer-speak for how much the orbit of an object deviates from a perfect circle. Planets, asteroids, and comets bound by the sun’s gravity all have elliptical, oval-shaped orbits, which mean they have an eccentricity between 0 to 1. No matter how far away from the sun their orbit takes them, they will always get pulled back. Interstellar objects have eccentricities greater than 1, and these are called hyperbolic orbits. Rather than an oval, their trajectory looks more like a hockey stick; it will never circle back around.

Both the interstellar objects discovered so far have clocked eccentricities greater than 1: ‘Oumuamua came in at around 1.2 and 2I/Borizov registered around 3.3. But things get tricky when objects have eccentricities that are just slightly above 1. This is the case with the recently discovered comet C/2020 F5, whose eccentricity is just 1.01. Because the comet is so new, there’s still too much uncertainty in the measurement to definitively say that it is local or interstellar.

Farnocchia says that, so far, additional measurements have reduced the object’s eccentricity, reducing the chance that it might be an interstellar object. There’s also the fact that the object is moving pretty slowly relative to the solar system, which further limits the odds that it's from elsewhere in the galaxy. “If you had something that was really interstellar, chances are the relative velocity would be much higher,” says Farnocchia.

Matthew Holman, director of the Minor Planet Center, says he wasn’t very surprised by the announcement of C/2020 F5. He says that comets with eccentricities that are just slightly above or below 1 are discovered by astronomers somewhat regularly. In the Minor Planet Center database, there are six previously discovered comets with eccentricities larger than C/2020 F5’s, including another comet discovered earlier this year. “There are lots of things that can make something look like it has a hyperbolic orbit with an eccentricity a little above 1,” says Holman. For example, the gravitational pull of large planets like Jupiter and the release of a comet’s gasses as it approaches the sun could both mess with an otherwise elliptical orbit.

But even if C/2020 F5 does turn out to be just another ordinary comet, it’s only a matter of time until astronomers locate another interstellar object. Following the discovery of ‘Oumuamua in 2017, David Jewitt, an astronomer at the University of California Los Angeles, calculated that there may be as many as 10,000 other interstellar objects currently in our solar system. Although Jewitt acknowledged that it’s possible that a bonafide interstellar comet might have an eccentricity that is barely above 1, he says it is far more likely that it will be significantly larger. “The interest is in finding more that are unambiguously interstellar,” Jewitt says.

Given that the first interstellar object was only discovered three years ago, it makes sense that astronomers are anxious to track down and study more of them. They present unique opportunities to study the formation of distant alien worlds and are enticing targets for robotic missions. “There’s people at JPL who are waiting for these kinds of objects and want to begin collecting data in case it turns out to be interstellar,” says Farnocchia, who says he cautioned colleagues against rushing to study C/2020 F5. “It’s normal to be excited, and if it is interstellar, it would be really exciting. There just isn’t enough there yet to justify the excitement.”


More Great WIRED Stories